ARPA ORDER NO.: 189-1

e

<H

o

o
(np)
Do R-563-ARPA
a August 1971

The ISPL Language Specifications

R. M. Balzer
DDC
U nacy
ocT 22 9l U
LRI LE
A Report prepared fdr

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. 90406
Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

U

MISSING PAGE
NUMBERS ARE BLANK
AND WERE NOT
FILMED

F

DOCUMENT CONTROL DATA

t. ORIGINATING ACTIVITY

The Rand Corporation

20, REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

2b. GROUP

3. REPORT TITLE
THE ISPL LANGUAGE SPFECIFICATIONS

4. AUTHORIS) (Lost name, first name, initial)

Balzer, R. M.

5. REPORT DATE

béa. TOTAL NO. OF PAGES

6b. NO. OF REFS.

August 1971 49 =
7. CONTRACT OR GRANT NO. 8. ORIGINATOR'S REPORT NO.
DAHC15 67 C 0141 R-563-ARPA

9a. AVAILABILITY/LIMITATION NOTICES

DDC--A

9b.

SPONSORING AGENCY

pdvanced Research Projects Agency

10. ASSTRACT

‘ i

interprocess communication.

sAhe syntax and semantics of the Incremental
System Programming Language, designed for
use on its own computer, the ISPL machine
(described in R-562). Together the lan-
guage and the machine provide a complete
programming laboratory environment.
syntax used to describe ISPL is APAREL
(describerl in RM-5611), which is similar
to BNF but allows imbedded alternatives.
ISPL is incrementally compiled, resembles
PL/I, and allows hierarchical systems to
be built by providing capabilities for
scheduling core and central processing
unit resources, interrupt handling, and
Ports, the
new interprocess communication facility
(described in R-605), enables communication
between a program and the files, terminals,
physical devices, and monitor programs.
Extensive debugging facilities include
dynamic record verification of all pointers.
The language specifically includes the
facilities needed by the control program,
and the machine provides many of the fa-
cilities normally implemented in software.
The file system is described in R-603.

The

KEY WORDS

Computer Programming Languages
File Structure and Management
ISPL

AR
!

oSl 1
a0 pufF SEEHON ().

. M CER 0,

ISTIFIGATIOR . pasmsesmauresscsreess?

PR PTLTL]
. uummummmuu-m-

BY o reepressssassssman sttt
ot JAVATLABITY COOES
F T WAL /o0 SPECIAL

7 St O N —

: i
TEOESON for ~ B
| WAITE SERTION V

This research is supported by the Advanced Research Projects Agency under
Contract No. DAHC15 67 C 0141. Views or conclusions contained in this study
should not be interpreted as representing the official opinion or policy of Rand

or of ARPA.

i o5 G f RSB S e

P e R~ o WL

e AR e

ARPA ORDER NO.: 189-1

R-563-ARPA
August 1971

The ISPL Language Specifications

R. M. Balzer

A Report prepared for
ADVANCED RESEARCH PROJECTS AGENCY

SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

b o o i SR BT

-iii-

PREFACE

This report describes the Incremental System Programming Language
(ISPL), which was designed, together with the ISPL machine, to provide
a programming laboratory at Rand. ISPL is an incrementally compiled
system programmirg language containing facilities for scheduling, re-
source allocation, and interrupt handling. The report should be read
with its companion paper, R-562-ARPA, The ISPL Machine: Principles
of Operation, for a clear picture of the ISPL system. However, both
reports should be treated as specification documents only, as the sys-

tem has not yet been implemented.
Work on ISPL was sponsored by the Department of Defense's Ad-

vanced Research Projects Agency (ARPA) as an integral part of both
Rand's and the client's overall program to explore current computer
technology. The present report should be of interest to those con-

cerned with computer languages and system design.

-v—

SUMMARY

The design of the ISPL language has been integrated with the

design of the machine on which it runs. Together, the machine and

the language comprise a complete system for producing a programming
laboratory. Facilities incorporated into the language allow hier-
archical systems to be built by providing capabilities for scheduling
core and central processing unit resources, handling interrupts, and
interprocess communication. Ports, the interprocess communication
facility, enable communication between a program and files, terminals,
physical devices, and mcnitor programs. The language is incrementally
compiled and includes extensive debugging capabilities, such as dy-

namic record verification of all pointers.

-vii-

ACKNOWLEDGMENTS

Many of the ideas contained herein arose during the ISPL study
group meetings. As such, it is impossible to individually credit each
idea, but my thanks to the members: Richard Bisbey, Rod Fredrickson,
Bill Josephs, Larry Lewis, and Tom Wall.

My special thanks to Bill, who started the project with me and
helped crystallize many of the notions upon which the ISPL machine

and language are based.

3
i

PR P Ve

g
B
1

-f X—-

CONTENTS

PREFACE ® 00 000000000000 0000000000008 000000006060 000000000s000000 iii
SUMMARY © 0 00 0000000000 000000 0000000000000 0000000¢000000000O0S v

ACKNOWLEDGMENTS 0 06000 0600600600000 06060000000000000060000006000000 Vii

¢ Section
I. INTRODUCTION ® 0.0 00 500 406000600 50006000 50054050 5000004800000 1

106 L SXANYSR 6000000000000000000000000000000000000000C 2
B YA 00000000000000000000000000000000000000C 2
EXpressions ..c.ceceeoncsocsscesccsscscsssaassccssss 2
WY ITY 500C 2
SECTEETAWEY 6000000000000000000000000000000000000000a 3
Data Organization and Storage Classescoeseses 3
Declarations ..ececsescssoscscsscssosossoasssacsanonanse 4

III. RECORDS AND PRIMITIVE DATA-TYPES ..cceevecocccovsvesss 6
RO 00000 000000000000000000000000000000C000000a 6
Integer scovecssvcroscarsovsenccscococososssssescnoscs 7
E ¥ 2EH? 00000000000000000000C0000000000000CA0000A 8

Pointer O 0 0 00 0 000000 00 00 00 OB O OO OSSO OO SO NC OSSOSO OSSN 9
Discrete-Valued Variable ..ceeeeeeceovcesssssvoncns 12
R»ange LI BN BN I BB R B I B B N B R I B I I B B Y BN RN B R RN N BB BN RN R N 13

DEBCriptors: s cvevncessssssosasssssessecssesssenassse 14
List StruCtures ..iceecsccscccsssssccsscessssssnsss 16
StationNs .eececevesscssovsevsocesesessessasasasosssosas 18
S22 00C 18

Ports 0000000 06006006060060606060000000000000006000 0680000800 20

Dynamic Storage Management ...ceeoeeeececooscsccccce 20

Iv. STATEMENTS 000 0600000060000 0006000060060600000000000008s0000 22
PROCEDURE 90 0000000000000 06000000000008000006006800000 22

DO teveeeeecoococesocoonncnonnessoncocsnsseascaseses 22
4 IF and ELSE ..ceeeececocoeoccoscsococcacnconsccnsss 23
END 4eveocecececocoaeoeoeoeoosescsssosssosscassoscs 24
(0] 25
§ 00110) 2 25

ABSignment .cicccccncacevosctrtscscsctrotncorersenes 26
Synchronization ...eeeveveececccsccccccsscscsssssos 27
@ KI2G 5600C 27
IR YIS 500000000000000000000000000000000000000C 28
(I551Y 600C 29
I3RS 6000C 29
05 6000C 30
Dynamic Storage Allocation ...cceeesesscssssssssons 30

T swea—

e R bt S b e ol e e L

-x—

AUTO 9 0 60 00 0 00 0 00 00 6000 2O 0O NN L0 OO OO OSSO OEONNS OO OO OSGOEODS
PUSH and PULL sececeocscesoccnscsssconrsasnscassons
Station Assigmment «ccccececssssncosscssscncnsranes
IS Y0 ® 5 60 0000000000000000000000000000000000C00C
Process Suspension ..cseecssccrscccsssnssssssscncs
Initialization .cccecevovovocvonesvarsoscsvasnsssnes
DISPATCH 4.ccccecccosanarsacootostsassasossossasssnss
Real Core Allocation c.cceeessccscscasssssssssnnns

REFERENCES 20000 000 000 0000 000000000000 0000 G000 0000000 RGSSODNS

31
31
32
32
33
33
35
35
36
36
36
37
37

39

1. INTRODUCTION

This report describes the syntax and semantics of the Incremental
System Programming Language (ISPL). The language was designed with
the machine on which it runs. The ISPL machine is defined in a com-
panion report, R-562-ARPA, The ISPL Machine: Principles of Operation
[1]. Both reports should be read together for a clear picture of the
total ISPL system, which was designed to provide a programming labora-
tory at Rand. However, both reports should be treated as specifica-
tion documents only, as the system has not yet been implemented.

The syntax used to describe ISPL is APAREL [2], which is similar
to BNF [3] except that imbedded alternatives are allowed (separated
by '|' signs) and the ARBNO function represents one or more occurrences
of its first argument separated by its second argument.

The report is divided into two main sections. The first describes
all the data types and the legal operations upon them. The second pre-

sents each statement in the language and describes its semantics.

II. ISPL SYNTAX

IDENTIFIERS

Identifiers are composed of upper- and/or lower-case letters,
digits, and the three special characters '_' (underscore), '#' (number
sign), and '@' (at symbol). Identifiers must start with a letter or

special character; they may not contain any imbedded blanks; and they
must be between 1 and 32 characters long.

Format:

[identifier: —digit arbno(letter|special character|digit,")]
[letter: A|B|C...Y|Z]|a|b|c...y]|z]

[special _character: _|#|@)]

[digit: 0|1]2...8]9]

EXPRESSIONS

Expressions, as defined in PL/I, are scalar expressions [4]. They
are composed of identifiers and operators. During expression evalua-

tion, argument-passing, and assignment, only the following conversions
are itmplicitly done by ISPL:

Integer (4) +* Integer (2) +* Integer (1)

Character ++ character varying

[operators: '+q|v_v|v*vlv,vlv*vlv.‘.vlv_,vlv”vlv&vlvlvlvevlv_.vl

v—vlv*v|v<v|v>v | 1<t lvzvlv_,.vlv_pv l 'ﬂ<'|mod]

LABELS

Two kinds of names can be attached to a statement: statement
names and statement labels. A statement name is used to match levels
(the beginning and ending of compound statements). If a statement
name occurs with a level-ending statement, all unended levels up to
and including the named level are ended. Statement labels are used
as an operand in a RESUME statement (from within an ON-UNIT). State-

ment names (except those used to begin a procedure level) may be

reused as often as desired. Statement labels must be unique within a

compilation (defined below).
Format:

[statement_name: identifier ':']
(statement_label: '('identifier'):']

STATEMENTS

Statements are sequences of keywords and expressions., There are
three kinds of statements: (1) simple statements, (2) level-beginning
statements, and (3) level-ending statements. Although statements are
independent of line- or card-image boundaries, statements extending
across such boundaries must have a CNTL character at the end of every
line that is not the end of the statement. This is done so that the
text editor knows where statements end without having to do a complete
parse of the input. Statements may end with a semicolon. After a

semicolon, all text on a line is a comment,
Format:

[Statement:

statement_label\ simple_statement

| 1.t <Tomment>]
s tatement_name> level beginning s tatemem:> |

| |level ending_statement

DATA ORGANIZATION AND STORAGE CLASSES

ISPL provides two storage classes: STATIC, which is allocated at
compile time for the entire life of the program; and BASED, which is
explicitly CREATED and DESTROYED by the user. The elements of STATIC
storage are either the primitive data-types of ISPL (i.e., INTEGER,
CHARACTER string, SEMAPHORES, PORTS, etc.), or arrays of these data
types. However, the elements of BASED storage are aggregates of the
primitive data-types called RECORDS. A record's components may be any
of the primitive data-types, or arrays of these data types. They are
individually named and need not all be of the same primitive data-type,

The declared name of the record is called its RECORD_TYPE and is used
to identify explicitly created instances of this type of record. Since
the user may explicitly create several instances of a RECORD TYPE, a
method exists to access each instance.

A POINTER is an ISPL primitive data-type that references specific
instances of RECORD TYPES. Each time an instance of a RECORD TYPE is
created, a pointer is set to reference it. The syntax for this pointer-

referencing is:

pointer_variable + record component

The pointer references a specific instance of a record type and the
named component within that instance is accessed. The pointer refer-
encing a desired instance may itself be a component of an instance of

a record type and so must be pointer-referenced:
pointer_variable;, - pointer_variable, + record component

Such pointer-referencing can be extended to any number of levels. One
instance of each RECORD_TYPE is called CURRENT and is the instance
referenced if explicit pointer referencing is not used. In syntactic
descriptions throughout this report, the data name will have '_specif-
ication' appended to it whenever a data access can be either pointer-
referenced or not. Thus, a PORT that might be pointer_referenced
appears in syntactic descriptions as:

port_specification

DECLARATIONS

All data items must be declared before being used, either explicitly
in a declaration statement or implicitly by their contextual usage.

Format:

[declare_statement: DECLARE arbno (item declaration,',')]
[item declaration: record_name <array_bounds RECORD|PARAMETER> |
| variable_name array_bounds primitive date_ type
scope <INITIAL'('initial value')'|>

-5-

[array_bounds: '('arbno(number<':'number|>,',')')'|]
[Scope: EXTERNAL|GLOBAL | INTERNAL|]

Each of the primitive data_types is described in Sec. III.

Within a declare statement, all the item declarations that are
primitive data_types and that occur after either a RECORD or a PARAMETER
list are components of that RECORD or PARAMETER list and may not have
a scope specified. All other item_declarations for primitive data types
are elements of STATIC storage and may have a scope specified. GLOBAL
defines a variable that is referenced by the same name as an EXTERNAL
variable in some other compilation. All such EXTERNAL references are
to the same, single, GLOBAL definition. INTERNAL means it is neither
GLOBAL nor EXTERNAL and is the default if scope is not explicitly
specified.

If an initial value is specified, when the variable is allocated,
it is assigned the specified value. If no initial value 1is specified,
the value UNINITIALIZED is assigned upon allocation; if this value is
used within a program, an UNINITIALIZED DATA program—-error occurs.

-t

Aonate |

III. RECORDS AND PRIMITIVE DATA-TYPES

Each of the data objects in ISPL is described below. The descrip-
tion includes the declaration syntax and semantics, the allowed opera-
tions on the data‘type, and any assoclated pseudo-variables or built-in
functions. Pseudo-variable descriptions begin with "specifies," and

built-in-function descriptions begin with "returns."

RECORDS

Declaration Syntax and Semantics

Syntax:

variable<RECORD | PARAMETER>', 'subelement_list

where subelement_list is a sequence of any of the other declarations
syntaxs given in this section. This sequence is ended either by the
appearance of another record specification or the end of the declara-

tion statement.
Semantics:

The variable name is declared to be a record and all the declara-
tions in the subelement_ list are the elements that compose the record.
The amount of storage required for a record is the sum total of all the
storage required for each record element, plus whatever extra storage
is required for the proper alignments. If another declaration occurs
for the same record, it is assumed that the subelement list is appended
to the end of the already specified data.

The different types of records have the following interpretation:

o Record: Allocated and freed only through AUTO, CREATE, and
DESTROY commands. Current instance of record is maintained by
ISPL.

o Parameter: Used to specify the formal parameters to a procedure.
It is never allocated or freed, but current instance is main-
tained and updated by ISPL-procedure entry and exit routines.

Since arguments are passed by reference, each use of a parameter

B e

e S A

causes an indirect access through the current parameter list.
Using the parameter-list name, the parameters in a parameter
list can also be accessed as a one-dimensional array. By use

of the built-in array function, HIGH BOUND, the number of param-
eters passed can be tested dynamically. Because each of the
parameters is actually a descriptor for the passed arguments,

any of the descriptor (see p. 15) built-in functions and pseudo-

] variables, such as TYPE, can be used.

Qgerations

Records can be compared for equality and assigned a value, which
can be accessed. In each case, the operations are performed element by

element for the entire length of the record; no conversions are performed.

t Pseudo-Variables and Built-In Functions

} length(record-name)--Returns the length of the record in bytes.
INTEGER

Declaration Syntax and Semantics

Syntax:
variable INTEGER < '(' <1 | 2| 4> ") | >
Semantics:

Integers can be one, two, or four bytes long. If no length is
specified, two bytes are assumed. One-byte integers are always posi-
tive and consist only of a magnitude. They can be aligned on any byte.
Two- and four-byte integers have a sign and magnitude and are, respec-

tively, halfword and fullword aligned.

Operations

The arithmetic operators of '+', '=', '*' '/' and arithmetic
comparisons are legal and have their normal meaning. The value of

integer variables can be accessed and assigned.

el

) it b e Y

-8-

Pseudo-Variables and Built-In Functions

None.

CHARACTER

Declaration Syntax and Semantics

Syntax:
variable CHARACTER '(' number ')' <VARYING |>
Semantics:

Character strings can be either fixed or varying. Both types al-
ways occupy the same (during an allocation) fixed amount of storage.
Varying strings occupy a varying portion of the same, fixed, maximum

amount of storage.

Operations

Concatenation ('||') can be used to add one string to the end of
another. The operators or('|'), and('&'), and exclusive-or('8') can
be used to do the bit-by-bit operation on the longer length of the two
strings (the shorter string is extended with zero bits).

String comparison also uses the longest length of the two strings
(the shorter is extended with blanks). The individual characters are
compared on the basis of the collating sequence of the machine.

String assignment to variable-length strings will set the length
of the variable string to that of the assigned string value.

If the length of the new value is too large for either a fixed-
length string or a variable-length string, it 1s assigned left-justi-
fied and the excess is truncated.

Assignment of a shorter string to a fixed-length string left-just-
ifies the value and pads it on the right with blanks.

Pseudo-Variables and Built-In Functions

Substr(string,I,J)--Specifies a descriptor for the Ith through
(I+j-1)th characters of the named string.

Index(stringl,string2,I,not_found_expression)--Returns the posi-
tion of the first instance of string2 within stringl starting at posi-
tion I of stringl. If string2 does not occur at or after position I,
then the not_found expression is evaluated and returned as the value
of the function. If not specified, its default value is zero. This
expression may be a statement that transf{ers control (out or end of
statement) to a higher level (before a value is returned).

length(character_string specification)--Returns the current length

in bytes of the character string.

POINTER

Declaration Syntax and Semantics

Syntax:
variable POINTER
Semantics:

The named variable is declared to be of type pointer. It is full-
word aligned and occupies a fullword. The value of a pointer references
an address and is composed of four parts: a segment number, an offset
within that segment, a read/write capability, and a record_type. To
calculate the address referenced, the segment number is used as an
index to a segment table associated with the process being executed.

The entry in the segment table specifies the base address of the seg-
ment and its length. If the offset specified is larger than this length,
the reference is illegal. The offset is added to the base to complete
the address calculation. The segment-table entry may indicate that the
specified segment is not presently in core, in which case ISPL suspends
the process until the desired segment is available in core.

Each process has its own segment table., It and all its descendent
tasks that are not themselves processes share the same segment table.

The read/write capability is a discrete value from the read write_
capability range consisting of the values read_only, read, read_write,
and modal. These values are given in decreasing order of restrictive-

ness; therefore, in following a pointer chain or path, the resulting

Vv

gy

-10-

read/write capability is the more restrictive of the accessing capa-
bility and the accessed capability, as for example, in the pointer
chain

Pl(modal)->P2(read write)->P3(read_only)->
P4(read_write)->J

In this example, the values in parentheses indicate the read/write

capability of the pointers. Some implicit pointer is used to access

Pl, and we assume its capability is modal. P2 is also accessed with

modal capability, P3 with the more restrictive read write capability,

P4 with the most restrictive read only, and J with this same read only

capability even though P4 has read_write capability. Thus, protection

can be assured by starting with, or encountering, the proper capabil-

ities in a pointer chain or path. |

There is one exception to these precedence relationships: when a
read capability encounters a read write capability, it becomes a read
write capability Thus, local read(only) protection can be given that,
via an appropriate pointer, leads to a read write capability. This is
important for system blocks that must be protected but that lead to
writable blocks in a user's space.

To allow processes to restrict the read/write capability, the RE-

STRICT function (see p. 12) returns a pointer with the specified, more
restrictive read/write capability and with all other components the same.

To allow for finer protection, new segments can be created over- 4
laying existing ones and a restricted capability pointer created (via ;
RESTRICT) for that segment. All further references through the pointer,
or through pointers created from that pointer, can only be to data
within the newly created segment. These will have a read/write capa-
bility at least as restrictive as the original pointer.

The record type field of a pointer contains an indication of the
prototype name of which the record pointed to is an instance. This is
not an indication of the data type of the element being referenced but
of the record_type of the record being pointed to. Each declared
record is assigned a unique value from the range '"record type"; this

value 1s used to distinguish the record_type of the record instance

-11-

being pointed to. The record type component is used at run time to
dynamically check the validity of the pointer reference. Whenever a
pointer is used to access a plece of data, the record type component

of the pointer is compared with the record type of the object speci-
fied in the source statement (if the object is a member of a record,
the record_type of this record is used). If the record types do not
agree, a pointer_ reference error occurs. If the record_type of a
pointer is "undefined," no record_type checking occurs. However, use
of such a pointer sets its record_type to the record type of the object

specified in the source statement.

Operations

Pointers can be compared against each other for equality and in-
equality (this only compares the address portion of the pointers).
Their values can be accessed and assigned. Arithmetic operations can
be performed on their offsets through the OFFSET pseudo-variable. Such
arithmetic operations affect only the offset portion of the pointer
value and also set the record type component of the pointer to 'unde-
fined." Although arithmetic manipulation of pointer offset is allowed,
it should be strongly discouraged since it disables ISPL's built-in
pointer debugging capabilities. (Note that the protection mechanisms
in the system are unaffected by such offset manipulations.) A con-
scious attempt has been made to make such offset manipulations un-
necessary by including the following capabilities:

o Next and previous operations on arrays (moving through con-

tiguously stored tables).

o Substr (manipulation part of a string).

0 Move bits (machine-representation defined type-conversions).

Pseudo-Variables and Built-In Functions

NULL--Returns a pointer to an invalid address. An attempt to
reference the object pointed to by a pointer with NULL as its value
causes a NULL ACCESS program error.

SEGMENT_NUMBER (pointer)--Returns as an integer the segment_number
portion of the specified pointer.

Batite o rin o

KDL o ST

SEGMENT LENGTH (pointer)--Returns as an integer the length of the
segment referenced in the specified pointer.

OFFSET (pointer)--Specifies as an integer the offset component of
the specified pointer.

CAPABILITY (pointer)--Returns the read write_capability value for
the specified pointer.

RECORD_TYPE (pointer)--Specifies the record type of the specified
pointer.

NEQ_SEGMENT (pointer, length)-—Returns a pointer to the newly
created segment. The segment starts at the address referenced by the
specified pointer and extends the specified amount. If the length
specified 1s large enough to extend out of the segment specified by
the pointer, a new segment will not be created and a null pointer will
be returned. The read/write capability of the returned pointer will
be the same as the read/write capability of the specified pointer. If
no pointer or a null pointer is specified, the new segment does not
overlay any existing segment but is a separate entity.

RESTRICT (pointer, capability)--Returns a pointer with the same

components as the specified pointer except for the read/write capability,

which is the more restrictive of the pointer capability and the speci-
fied capability. The specified capability must be a value from the
fead_yrite_papability range.

DISCRETE-VALUED VARIABLE

Declaration Syntax and Semantics

Syntazx:
variable range name
Semantics:

Discrete variables occupy one byte and are byte-aligned. They
can take on any of the symbolic values declared to be in the named

range.

§
g

e s g

-13-

Ogerations

Discrete variables can only be assigned or compared with other
discrete variables declared to have the same range. Greater than and
less than apply to the order in which the values of the range were
specified. In a do-case statement, the ordinal position of the value
of the discrete variable within its range is used as the value of the

selector function.

Pseudo-Variables and Built-In Functions

<nextIprevious>(variab1e,end_of_pangq_gxp)--Returns the <next|
previous> value from the range of the discrete-valued variable. If
the <next|previous> value does not exist, the end of range expression
is returned as the value of the function. If not specif&ed, its value
is UNDEFINED. The expression may be a statement (OUT or ENDOF) that

transfers con:rol to some higher level.
RANGE

Declaration Syntax and Semantics

Syntax:
variable RANGE '(' range_value_list')'

where range_value list is an arbitrary list of values (separated by

commas) declared to be in the named range.
Semantics:

Each range is considered to be a unique data type and other vari-
ables can be declared to be of this type.

The values in a range are ordered by their declared position.
This ordering can be used in discrete-variable comparison and do-case
statements.

Every range has UNDEFINED as its lowest value. Discrete variables
can be set and tested for this value. If a do-case statement is executed
with an UNDEFINED value, the last (out_of_bounds) statement-group is

selected.

FE#

o A ol Lol e PRI

~14=

As with records, new elements can be added to the end of a range
at any time through a declaration statement specifying the range name

and the new elements.

Operations

None.

Pseudo-Variables and Built-In Functions

‘<next |previous> (discrete variable,end_of range exp)--Returns the
<next|previous> value in the range of the discrete variable from the
current value of the discrete variable. If the <next|previous> value
does not 2xist, the end of range expression is evaluated and returned
as the value of the function. If not specified, its default value is
UNDEFINED. The end of range_expression may be a statement that trans-
fers control (OUT or ENDOF statement) to some higher level (before a

value is returned).
DESCRIPTOKS

Declaration Syntax and Semantics:

Syntax:

variable DESCRIPTOR < '(' < type | >

< '," <length | > <',' data address | > | > ")' | >
or
variable ARRAY DESCRIPTOR '(' number ')'

Semanties:

The value of the variable will be a descriptor for some data value.

The descriptor consists of the type, length, and data address of the
value being described.
For array descriptors, the number specifies the number of dimen-

sions in the array described.

S e ST el KGR

-15-

If the type, length, and/or data address are specified, the de-
scriptor can only be used for data of the declared attributes. In
these cases, ISPL can generate much more efficient code for the use
of the descriptor, especially if the type is specified. Such type-

specified descriptors become a type of indirect reference.

Operations

The values described by the descriptor can be accessed and assigned
through the descriptor and can involve any of the operators, pseudo-
variables, and built-in functions appropriate for that type of data.

Elements of the array described by an array descriptor are

accessed by preceding the desired element by:

array_descriptor (subscript_list) -

Whenever the value of the descriptor itself is desired, rather
than the data it describes, the descriptor_value pseudo-variable must
be used.

Descriptor values can only be (1) assigned to other descriptors,
(2) passed as arguments, and (3) compared to other descriptor values

for equality and inequality.

Pseudo-Variables and Built-In Functions

Descriptor_value (descriptor)--Specifies the value of the descrip-
tor rather than the data the descriptor describes. This pseudo-variable
is used whenever the descriptor_value itself is to be manipulated.

Type (descriptor)--Specifies the data type being described. It is
a discrete value in the record type range that is built up by ISPL from
the declared data types. The standard data types, such as integer,
character, varying, pointer, etc., are included in this range, as are
such user-defined types as declared ranges and records.

Length (descriptor)--Specifies the length as an integer of the data
item being described.

Data_address (descriptor)--Specifies the address as a pointer of

the data item being described.

-16-

Descriptor (pointer, current_length, max_length)--If maximum
length is unspecified, it is set to current length. This function
returns a descriptor composed of the arguments of the function.

Array descriptor (pointer, length, low_bound; high bound 1,
low_bound 2, high bound 2, ..., low bound M, high bound M)--Returns

an array descriptor composed of the arguments of the function.

LIST STRUCTURES

Declaration Syntax and Semantics

Syntax:

STACK
Variable <2:it:i;ixzagata_type> <QUEUE> '('domain_specification')’
= RING

number
<§TTH '('arbno(station_pame,',')');> STATIONS:>

Semantice:

The variable is declared as the indicated type of 1list structure.
The type of all the elements of a list structure is the same and is
the primitive data-type or record_name specified. STACKS are list
structures in which elements are added (PUSHED) and removed (PULLED)
from the same position (STATION), called the TOP. QUEUES are list
structures in which elements are added at one STATION, called the
BOTTOM, and removed from another STATION, called the TOP. RINGS are
list structures in which elements can be added or removed BEFORE or
AFTER any STATION in the RING. The elements of STACKS and QUEUES are
linked from the TOP toward the other end, whereas the elements of
RINGS are linked in a circle in both the FORWARD and BACKWARD direc~-
tions. All the elements of a list structure are obtained and rzturned
to a pool of elements, called a DOMAIN, The DOMAIN used for each list
structure is specified in its declaration. In addition to the fixed
named stations, list. structures may have as many additional movable

(via STEP command) stations as desired. These are specified either

-17-

by number (and accessed as an array) or by name. If not specified,

STACKS and QUEUES have one movable station and RINGS have two.

Operations
STACKS, QUEUES, and RINGS can only be operated on by the PUSH

and PULL operators. Their movable stations can be operated on by the
STEP operator and can be assigned to other stations within the same
list structure. Both fixed and movable stations can be compared with
each other for equality and inequality.

' The stations within a list sfructure can also be used to access
the element or components of the element referenced by that station,

i.e., a station can be used as a '"pointer.'" The syntax is

e <number > ry!
list_structure_specification PEEISCT [ETTE -

element_or_component_name

If a particular station is not specified, the first movable station is
used.

Exa. ples: Given the declarations:

DECLARE S1 INTEGER STACK (Domain_ 1) WITH (movable_1,
movable_2) STATIONS,
Q1 R1 QUEUE (Domain_l) WITH 2 STATIONS,
R1 RECORD, P POINTER, I INTEGER (4);

Then the following examples are legal:

Sl(movable_2) -+ INTEGER
Ql (1) + 1 same as Q1 » I
Ql (BOTTOM) = P + 1

Pseudo-Variables and Built-In Functions

None.

-18-

STATIONS

Declaration Syntax and Semantics

Syntax:
variable <RING |> STATION
Semantics:

The declared station is a movable station. Ring stations can
only be used to reference elements of a RING structure, and nonring
stations can only be used to reference elements of STACK or QUEUE
structures. However, STACK or QUEUE structures do not necessarily
have to reference elements from a particular list structure or even

from the same DOMAIN.

Operations

Same as movable stations described in list structure, above.

Pseudo-Variables and Built-In Functions

None.

SEMAPHORE

Declaration Syntax and Semantics

Syntax:

variable <?YNC“R°N°US> SEMAPHORE

STACK
'('assignable_item <<QUEUE:> ' ('domain_specification')') ')’

where the STACK and QUEUE declarations are defined as above, and assign-
able_item is either any primitive data-type to which the assignment
operator can be applied or a RECORD of such items.

=19~

Semanties:

Semaphores are the basic mechanism for synchronizing processes,
tasks, and exclusive-execution blocks (EEBs). The V operation makes
the semaphore available and the P operation makes it unavailable.

If it is already unavailable, the P operation causes the issuer to
wait until the semaphore has been made available, and then makes it
unavailable. Scheduling, swapping, Ports, and interrupts are all
based on semaphores.

The variable is declared to be a semaphore. If it is a SYNCHRO-
NOUS semaphore, then, when an unsuccessful P operation is done on it,
the running EEB is considered to have exited and any lower-priority
dispatchable FEBs in the running task are dispatched. If the sema-
phore is not SYNCHRONOUS, then an unsuccessful P is not treated as an
exit and lower-priority dispatchable EEBs are not dispatched until
such an exit occurs [1].

The semaphore can have data associated with it so that a success-
ful P also returns a piece of data, such as a track number, a comple-
tion code, or a pointer to a parameter_list (see p. 20). A V operation
on such a semaphore must supply the data to be returned on a P. This
data must be stored; three methods are available: STACKS and QUEUES,
to provide, respectively, last-in first-out (LIFO) and first-in first-
out (FIFO) buffering, and unbuffered, where only one data item can be

held without a data overflow.

Operations

Only the P and V operations can be performed on semaphores. The

data format of these operations must be used with data semaphores.

Pseudo-Variables and Built-In Functions

None.

.|.

See Ref. 1, Sec. V for a fuller explanation.

PORTS

Declaration Syntax and Semantics

Syntax:

variable <TYNCHR°N°US> PORT

W3 STACK 3 /6 .
< ; <QUEUE> (d°main_ﬂpec:l.fication))

where STACK and QUEUE declarations are defined as above.
Semantics:

Ports are a program's method of communicating with the outside
world--files, terminals, and Ports in other programs. Any number of
arguments can be passed or received through a Port. Although Ports
are a primitive data-type, they are composed of a pointer (which
references the other Port of the interconnected pair) and a data sema-
phore, where the data is a pointer to the argument_list passed across
the Port., The data semaphore can be SYNCHRONOUS or not, and can be

buffered (either stacked or queued) or unbuffered.

ggerations

Ports can be CONNECTED with files, terminals, or other Ports--and
can be DISCONNECTED from them. Arguments can be SENT and RECEIVED over
a Port and information can be REQUESTED.

Pseudo-Variables and Built-In Functions

None.

DYNAMIC STORAGE MANAGEMENT

Declaration Syntax and Semantics

-21-

Syntax:

AREA L [] 1 L
variable <DOMAIN> ('number’')
Semantics :

An AREA is a contiguous block of free storage from which RECORDS
are CREATED and to which they are returned when DESTROYED., A DOMAIN
is a contiguous block of free storage from which elements for list
structures are taken for PUSHING and to which they are returned when
PULLED. A DOMAIN is divided into equal-size blocks of free space,
which are used for the elements of the list structures obtained from
the DOMAIN. This size is the maximum size of any element obtained from
the DOMAIN.

For both AREAS and DOMAINS, the number specified is the length of
the AREA or DOMAIN, in bytes.

Operations

Records can be CREATED from and returned to (DESTROYED) an AREA.
List-structure elements can be PULLED from or PUSHED to a DOMAIN. Both
AREAS and DOMAINS can be INITIALIZED, which makes all space within them

available.

Pseudo-Variables and Built-In Functions

None.

-22-

IV. STATEMENTS

PROCEDURE

Syntax:

PROCEDURE <'f 'Parameter_list_name') '> < ' : 'function_attribute>

Semantics:

The PROCEDURE statement indicates that all statements within the
level started by the PROCEDURE statement are to be treated as a sub-
routine, invokable only through a CALL statement (or a function ref-
erence); this subroutine returns to the point of invocation upon
termination. The PROCEDURE statement must have a unique (within the
compilation) STATEMENT NAME attached to it. It is invoked by specify-
ing this STATEMENT NAME.

The first of the two optional specifications in the PROCEDURE
statement is the parameter specification, which specifies the naﬁe of
the formal parameter list to be used for the procedure. The second
option, if present, specifies the attributes of the value returned as
the result of the function. The function attributes have the same
format as declaration statements, except that storage class, scope,
and initial attributes are not specified. The value returned may be
any ISPL elementary data-type except semaphore, Port, area, or domain.

Upon entry to a procedure, the context is preserved and upon exit

it is restored. This context consists of:

o Entry point of procedure
o Return point from procedure

o Reference to current records upon entry to the procedure.

LY
Syntax:
CASE expression
DO (CONTINUOUSLY
terative_specification

Semantioes :

The DO statement specifies iteration or selection of the state-
ments within the level started by the DO.

There are three types of DO statements:

1. DO CASE: The value of the expression is used to select one
statement group from the sequence of statement groups that
lexicographically follow the DO CASE statement. This group
is executed and, upon completion, control passes to the end
of the entire DO CASE level. A DO CASE level can only be
ended by an END statement, which specifies the label asso-
ciated with the DO CASE statement or the label of a level in
which the DO CASE statement is contained. Therefore, for
consistency, DO CASE statements must be labeled.

Each statement group is explicitly ended by an END state-
ment and~£he next statement group begins with the next statement.

The first statement group is number one. If the value of
the expression is less than one or greater than the number of
statement groups within the DO CASE level, the last statement
group is executed.

2. DO CONTINUOUSLY: This statement is the basic iterative loop-
ing mechaniuom in the language and specifies (1) that the group
of statements in the level begun by the DO statement are to be
executed, and (2) that upon each completion of this level, the
group of statements should be re-executed. Presumably, there
is some mechanism within the level that will halt this iter-
ative execution (see p. 25).

3. ITERATIVE DO: This statement has the same syntax and seman-
tics as the PL/I iterative DO statement.

IF AND ELSE
Syntax:

IF expression THEN

and
ELSE

-2‘0- J

Semantics:

The IF statement starts a level, called the THEN level, which is
explicitly ended by either an ELSE or an END statement. The ELSE state-
ment, if present, starts the ELSE level, which is explicitly ended by
an END statement. If the ELSE statement is labeled, it ends all lexi-
cographically preceding levels that have not been ended, up to and in-
cluding the labeled level, which must be a THEN level.

The expression is evaluated and, if true, the THEN level is exe-
cuted and the ELSE level, if present, is skipped. If the expression
is false, th~ THEN level is skipped and the ELSE level, if present, is

executed.

END
Syntax:
END
Semantics:

The END statement ends one or more levels (started by PROCEDURE,
DO, or IF-THEN-ELSE statements). If it is unlabeled, it ends the lexi-
cographically closest preceding level that has not already been ended.
If a label is specified, all such unended levels are ended up to and
including the level with the specified label.

The action taken upon execution of an END statement depends upon

the type of level it ends. These actions are

1. PROCEDURE: Return to caller from procedure and restore caller's
context. o

2. DO: The end of a DO CASE statement is a no-op. The end of a DO
CONTINUOUSLY or an ITERATIVE DO is a loop back to the beginning
of the level within the DO. In the case of an ITERATIVE DO,
it also increments and tests the control varisble against the
limit.

3. IF: The end of an IF statement is treated as a no-op.

Syntax:

OUT <label | >
Semantics:

The OUT statement transfers control out of the current level; that
is, control continues with the statement immediately following the END
statement for the level being exited. An exception is a procedure
statement, for which control continues with the statement following the
invocation of the procedure rather than with the statemeﬁt following
the end of the procedure.

If a label is specified, then the OUT statement applies to that
level rather than to the current one. The specified level must be a

dynamic ancestor of the OUT statement.

ENDOF
Syntax:
ENDOF < label | >
Semantics :

ENDOF behaves exactly as does OUT, except that the END statement
at the end of the specified level is executed. Thus, ENDOF applied to
a DO CONTINUOUSLY or an ITERATIVE DO causes looping.

CALL

Syntax:

e oty ry Y
CALL statement_name < T arbno(expression,',')') >

Semantics:

The CALL statement invokes the procedure specified by the statement
name, passing any arguments specified. The arguments are all passed by
reference (expression arguments are passed by a reference to a temporary

variable containing the value of the expression).

-26-

After the named procedure has returned, execution continues with

the statement following the call.

ASSIGNMENT
Syntax:
Variable specification + expression
Semantics:

Note the use of the left arrow (+) as the assignment operator.
The value of the expression is assigned to the variable specified.
As noted in Sec. II, the only conversions implicitly done by ISPL are

integer (4)'*+ integer (2) +> integer (1)

character <+ character varying

In ISPL, only the following items can have a value ASSIGNED to
them:

Integer,

Character,

Character varying,
Pointer,

Discrete-valued variables,
Descriptors,

Array descriptors,
Stations,

Ring stations,

© 0 0 0 0o 0 0 0 o o

Records composed only of the above .items.

The following items cannot have a value ASSIGNED to them:

o Range,
o Stack,
0 Queue,
o Ring,
o Seméphore,
o Port,

PSSR PRI

27~

o Afea,
o Domain,

0 Records with at least one item from this list.

SYNCHRONIZATION

Syntax:

LI |
<3|[F> <W1;AIT> semaphore_specification < [variab le_specification> <THEN>

Tt
<:V semaphore_specification <: [expressio€>

and

SIGNAL

Semantics:

The P and V operators are Dijkstra's synchronization operators,
which operate uninterrupted [5]. V increments the semaphore by one
and P waits until the semaphore is positive and then decrements it by
one. 'V thus corresponds to releasing a semaphore and P corresponds to
obtaining one. Enclosing a P operation by the keywords IF and THEN
causes the P operation to be performed only if it will not cause a wait.
For the purposes of the enclosing IF statement, performing the P opera-
tion makes the 'if expression' TRUE and causes the THEN level to be
executed. Skipping the P operation makes the 'if expression' FALSE and
causes the THEN level to be skipped and the ELSE level, if present, to
be executed.

Data semaphores not only provide synchronization, but also attach
a piece of data to the semaphore released or obtained. In the V opera-
tion, this data is supplied as the value of the specified expression;
in the P operation, the data is assigned to the variable specified.

CONNECT
Syntax:

CONNECT port_type WITH port_type

-28-

where the syntax of port_type is

port specification
TERMINAL terminal id
FILE file name

Semantics :

A message path is established between the specified Ports. Data
can then be passed in either direction along this path. The system
automatically schedules these interconnected processes on the basis of
availability of the resources required by the processes (including
data coming in through a path or sent out through a path having been

processed) .
Ports can be terminals (logical devices through the IBM 1800),

files, or named Ports in a process' program.

In ISPL, the interconnection of Ports provides a very general form
of co-routines. The co-routines can be multiply connected and are data-
directed; that is, rather than having explicit co-routine control com-
mands, the availability of any required data along a path is used to
coordinate and synchronize the co-routines.

The Port facility is also the method by which programs can be con-
nected with terminals and/or files. As such, it is a form of job control
and can be specified either (1) externally to, or (2) within a process.

A Port is a primitive data-type composed of a pointer and a data
semaphore. The CONNECT command merely sets the two pointers to ref-

erence each other.

DISCONNECT
Syntax:
DISCONNECT port_specification

Semantics :

The meésage path associated with the named Port is broken (i.e.,
the pointers in the two interconnected Ports are set to NULL). If

the Port is not connected, a run-time error results.

s b

s

o
®

s e O R

-29-

SEND

Syntax:

1 1
SEND <;§:’;°(e""““1°“’ ’)> THROUGH port_specification

Semantics :

Since the sending of a message is really a form of co-routine
linkage, the method of passing the message will be the same as passing
arguments to a subroutine. Namely, the number and format of arguments
are established as a convention between the Ports being connected; argu-
ments are passed by reference.

The SEND operation is equivalent to a V operation on the remote
Port's (the one the specified Port is connected to) data semaphore,
passing the pointer to the argument list as data.

A run-time error results if a message is sent through an uncon-
nected Port.

The DUMP option produces a complete symbolic dump of all variables
in the process and its descendent processes. This includes all in-
stances of based records, semaphores, Ports, etc. Also included in
the DUMP is a symbolic display of the invocation chains and context of
each of the processes.

During the DUMP, all processes are suspended.

RECEIVE

Syntax:
<:TF RECEIVE parameter_list_name THROUGH port_specification <:THEN:>

Semantics :

This statement causes a sent message to be received through the
named Port. If none is available, the receiver waits until one is.
Enclosing a RECEIVE operation by the keywords IF and THEN causes the
RECEIVE operation to be performed only if it will not cause a wait.

-30-

For the purposes of the enclosing IF statement, performing the RECEIVE
operation makes the 'if expression' TRUE and causes the THEN level to
be executed. Skipping the RECEIVE operation makes the 'if expression'
FALSE and causes the THEN level to be skipped and the ELSE level, if
present, to be executed.

Since, as explained in the send command, a message consists of an
arbitrary number of arguments, the receiver of a message must have a
mecharism for manipulating each message. As with subroutine calls, a
formal parameter list is used to associate actual arguments with formal
parameters on a positional basis.

The receive command is equivalent to a P on the specified Port's
data semaphore, assigning the received pointer as the current instance

of the named parameter list.

REQUEST
Syntax:
REQUEST arbno(expression,',') AS parameter_list name THROUGH
port_specification

Semantics :

The specified arguments are sent through the specified Port and
the message sent back is received in the named parameter list. It is
assumed that the program on the other end of the Port uses the sent

arguments to select or specify the message returned.

DYNAMIC STORAGE ALLOCATION

Syntax:
IN area specification
CREATE record_specification (AS A SEGMENT

and

DESTROY record_specification

Semantics :

The CREATE statement creates an instance of the record specified.

In addition, if a pointer chain was used in the record specification,

-31-

then the rightmost pointer in the chain is set to reference the new
instance. Otherwise, the new instance is made CURRENT.

If AS A SEGMENT is specified, then the created record is placed
in a new segment just large enough for it. Otherwise, the record is
created within the specified AREA or within a system-defined AREA if
none is specified. '

In a DESTROY statement, the record specified is destroyed and the
pointer used to reference it, either explicitly in the pointer chain
of the record specification or the CURRENT pointer for the record, is
set to NULL. If the record destroyed was created AS A SEGMENT, the
segment is destroyed.

AUTO
Syntax:
AUTO arbno(record_name,',')
Semantics :

New instances of the named records are CREATED and made CURRENT.
Upon exit from the level in which the AUTO statement was issued, the
instances are DESTROYED and the instances that were CURRENT before
the AUTO statement are again made CURRENT,

IERE
Syntax:
record_specification CURRENT
; ACTIVE
process_variable specification INACTIV€>
Semantics :

The ACTIVE and INACTIVE options allow the monitor of a NEW pro-
cess (1) to RETRIEVE all core allocated to a process and temporarily
remove the process from the system, and (2) to restore it from an in-
active status [1].

The CURRENT option makes the specified instance the CURRENT one
for that record type.

R TP

o

PUSH AND PULL

Syntazx:

<<m‘*> A)

where list item is

atack or queue structure_specification
ring_ptructure_ppecification <(:9223310“ :> '
AFTER ring_ptation_ppecification mcetioninane

Semantics :

Either half of this operation can be omitted (the AND connective
is used only when both halves are present). If either half is omitted,
the omitted half's operation is performed on the FREE_ELEMENT STACK in
the do<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>